
 Please refer to Section 4 of this document for more detail about the Workload Management Services macros and how the subsystems
use these macros to exchange information with the Workload Manager.

 IMS Version 5 reports only execution phase samples.

 Classifying the transaction into a service class is actually done by the Workload Manager when CICS issues the IWMCLSFY macro.
Please refer to Section 4 for a more complete discussion of the subsystem work manager (e.g., CICS) interaction with the Workload
Manager.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .1

Rule WLM123: Significant transaction time was in Waiting for Lock state

Finding: A significant amount of the transaction response time for the service class
missing its performance goal was spent in the Waiting for Lock state. This
finding applies to service classes which are part of a subsystem (e.g., CICS
transactions).

Impact: This finding has MEDIUM IMPACT or HIGH IMPACT on performance of the
service class. The level of impact depends on the percent of transaction
response time spent in the Waiting for Lock state.

Logic flow: The following rules cause this rule to be invoked:
Rule WLM104: Subsystem Service Class did not achieve average

response goal
Rule WLM105: Subsystem Service Class did not achieve percentile

response goal

Discussion: When CPExpert produces Rule WLM104 or Rule WLM105 to indicate that
a subsystem service class did not achieve its performance goal, the logic
of these rules tries to identify the cause of the delay. The cause of the
delay initially is analyzed from the "served" service class view. The delays
from the served service class are reported by CICS/ESA Version 4.1 or IMS
Version 5 interaction with the Workload Manager, using the Workload
Management Services macros .1

CICS/ESA Version 4.1 reports two separate views of the transactions: the
begin_to_end phase and the execution phase . 2

• Begin_to_end phase . The begin_to_end phase starts when CICS/ESA
Version 4.1 has classified the transaction . This action normally is done3

in a CICS Terminal Owning Region (TOR).

• Execution phase . The execution phase starts when either CICS/ESA
Version 4.1 or IMS Version 5 has started an application task to process

 Please refer to Section 4 of this document for a more comprehensive discussion of the transaction states and the interaction between
the subsystem (CICS or IMS) and the Workload Manager.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .2

the transaction. For CICS, this normally is done in a CICS Application
Owning Region (AOR).

Within each phase, CICS or IMS reports the "state" of the transaction, from
the view of CICS or IMS. The state of the transaction is reported in the
following categories :4

• Idle state .

• Active state .

• Ready state .

• Wait state .

• Switched state .

If the subsystem supports work manager delay reporting, the delay
information is available in the "Work Manager/Resource Manger State
Section" of SMF Type 72 (Subtype 3) records. When a transaction service
class fails to achieve its performance goal, CPExpert analyzes the
information to identify the primary and secondary causes of delay.

 The Wait state indicates that a task in support of the transaction was
waiting on some activity. The Wait state is broken into several categories:
waiting for lock, waiting for I/O, waiting for conversation, waiting for
distributed request, waiting for a session to be established (locally,
somewhere in the network, or somewhere in the sysplex), waiting for a
timer, waiting for another product, or waiting for an unidentified resource.

CPExpert produces Rule WLM123 when the primary or secondary cause
of delay was that the transaction service class was in the Waiting for Lock
state for a significant percent of its response time.

For CICS transactions, this is the time accounted for by tasks which were
suspended waiting for such locks as:

• A lock on a CICS resource.

• A record lock on a recoverable VSAM file.

• Exclusive control of a record in a BDAM file

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .3

RULE WLM123: SIGNIFICANT TRANSACTION TIME WAS WAITING FOR LOCK

 A significant amount of the transaction response time for CICUSRB Service
 Class was spent in the Waiting for Lock State. For CICS transactions,
 this is the time accounted for by tasks which were suspended waiting
 for such locks as:
 - A lock on a CICS resource.
 - A record lock on a recoverable VSAM file.
 - Exclusive control of a record in a BDAM file
 - An application resource that has been locked by an EXEC CICS
 ENQ command
 These tasks would be shown as "Suspended" by the CEMT INQUIRE TASK
 command.

• An application resource that has been locked by an EXEC CICS ENQ
command

These tasks would be shown as "Suspended" by the CEMT INQUIRE
TASK command.

The following example illustrates the output from Rule WLM123:

Suggestion : IBM has provided detailed information about the Workload Manager I/O
Wait types used by CICS. Exhibit WLM123-1 shows the resources that a
suspended task might be waiting on for the Workload Manager Lock Wait
type.

Many of the causes of time spent Waiting for Lock are related to
application design, and the solutions often require a review of the approach
to the application or file design.

As shown in Exhibit WLM123-1, there are seven reasons that CICS
provides the Workload Manager with a Wait for Lock.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .4

RESOURCE RESOURCE SUSPENDING
TYPE OF WAIT TYPE OF TASK TYPE NAME MODULE

CICS system task waits System task AP_TERM STP_DONE DFHAPDM
File control waits User task KC_ENQ SUSPEND DFHXCPC
Loader waits User task PROGRAM program_ID DFHLDLD
Lock manager waits User task (none) LMQUEUE DFHLMLM
Task control waits User task KCCOMPAT CICS DFHXCPA
Task control waits User task KC_ENQ SUSPEND DFHXCPC
Temporary storage wait User task TSBUFFER (none) DFHTSP
Temporary storage wait User task TSEXTEND (none) DFHTSP
Temporary storage wait User task TSOPEN4B (none) DFHTSP
Temporary storage wait User task TSQUEUE (none) DFHTSP
Temporary storage wait User task TSSTRING (none) DFHTSP
Temporary storage wait User task TSUT (none) DFHTSP
Temporary storage wait User task TSWBUFFR (none) DFHTSP
Transient data waits User task KC_ENQ SUSPEND DFHXCPC
Transient data waits User task TDEPLOCK transient DFHTDEXP
Transient data waits User task TDIPLOCK transient DFHTDSUB

CICS WAITING FOR LOCK
Exhibit WLM123-1

• CICS system task waits . CICS module DFHAPDM is the Application
Domain (AP) module responsible for initializing, quiescing, and
terminating the application domain. CICS provides the Workload Manger
with a Wait for Lock when the application domain is being terminated
(shutdown or takeover). This lock type would not cause an individual
transaction to miss its performance goal.

• File Control waits . Lock waits caused by file control can occur when a
task is waiting for a record lock in a recoverable VSAM file. When an
application updates a record in a recoverable VSAM file, locking occurs
at two levels: (1) VSAM locks the Control Interval (CI) when the record
has been read, and (2) CICS locks the record.

The CI lock is released as soon as the REWRITE (or UNLOCK) request
is completed. However, the record is not unlocked by CICS until the
updating task has reached a syncpoint. This is to ensure that data
integrity is maintained if the task fails before the syncpoint and the record
has to be backed out.

If a second task attempts to update the same record while the record is
still locked, the second task is suspended on resource type KC_ENQ
until the lock is released. This can be a long wait, because the update
might depend on a terminal operator typing in data. Also, the suspended
task relinquishes its VSAM string and may relinquish its exclusive control

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .5

of the CI. The suspended task would have to regain these resouces and
may have to wait after it was no longer in a file control lock wait.

 BDAM does not use the "control interval" concept. When a task reads
a record for update, the record is locked so that concurrent changes
cannot be made by two transactions. The lock is released at the end of
the current logical unit of work. If a second task attempts to update the
same record while the first has the lock, it is suspended on resource type
KC_ENQ.

Solving Lock Wait due to file control may require a review of the
application logic or file design to see if the record-locking time can be
reduced.

• Loader waits . A task is suspended by the loader domain if it has
requested a program load and another task is already loading that
program. Once the load in progress is complete, the suspended task
normally is resumed quickly and the wait is unlikely to be detected.

If the requested program is not loaded quickly, there are two likely
causes:

• The system could be short on storage (SOS) , so only system tasks
can be dispatched. The Storage Manager Statistics part of the CICS
interval statistics contain information which can be analyzed to
determine whether the WLM Lock wait was likely caused by a SOS
condition. The field SMSSOS is a count of the number of times CICS
went SOS in a particular subpool (note that there are separate
statistics for each of the storage subpools).

• If the SMSSOS value is zero, you can be sure that the WLM Lock

waits were not caused by Loader waits.

• If the SMSSOS value is non-zero, it is possible that the WLM Lock
waits were caused by Loader waits because CICS entered SOS.
Unfortunately, there is no way to determine whether a task
suspended for a Loader wait actually was in the service class
missing its performance goal. However, the CICS region was
encountering SOS, and you should take action.

If the SMSSOS value is non-zero, CPExpert suggests that you
review the suggested actions beginning on page 251 of the IBM
CICS Verson 4.1 Performance Guide. These actions provide a
checklist for reducing the virtual storage requirements above and
below the 16MD line.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .6

Alternatively, you can execute the CICS Component of CPExpert
against the CICS region(s) serving the service class missing its
performance goal. The CICS Component will analyze the CICS
interval statistics to identify performance problems.

• There could be an I/O error on a library . You can check for
messages that might indicate an I/O error on a library. If you find that
an I/O error occurred, you should investigate the reason why the I/O
error occurred.

• Lock Manager waits . The Lock Manager suspends a task when the

task cannot acquire the lock on a resource it has requested, probably
because another task has not released it. A user task cannot explicitly
acquire a lock on a resource, but many of the CICS modules that run on
behalf of user tasks do lock resources. Lock Manager waits could
indicate a CICS system error.

You should review the "Lock Manager Waits" part of Section 2.3: Dealing
with waits (Bookmanager document) of the CICS/ESA Version 4.1
Problem Determination Guide.

While it is possible to experience Lock Manager waits, it is unlikely that
these are the cause of performance problems with the service class
missing its performance goal.

• Task Control waits . Task Control will suspend a task (1) if the task has
attempted to change the state of a file but another task is still using the
file, (2) if the task attepted to update a record in a recoverable file while
another task has a lock on the file, or (3) if a task has finished using a file
but not issued an EXEC CICS DEQ command or a DFHKC TYPE=DEQ
macro call.

 Solving these problems require a review of the approach to the
application or file design.

• Temporary storage waits .

• Resource type TSBUFFER indicates that the task that is waiting has
issued an auxiliary temporary storage request, but the buffers are all
in use. If you find that tasks are often made to wait on this resource,
consider increasing the number of auxiliary temporary storage buffers
(system initialization parameter TS).

• Resource type TSEXTEND indicates that the waiting task has issued
a request to extend the auxiliary temporary storage data set, but
some other task has already made the same request. The wait does

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .7

not extend beyond the time taken for the extend operation to
complete. If you have a task that is waiting for a long time on this
resource, it is likely that there is a hardware fault or a problem with
VSAM.

• Resource type TSQUEUE indicates that the waiting task has issued
a request against a temporary storage queue that is already in use by
another task. The latter task is said to have the lock on the queue.

The length of time that a task has the lock on a temporary storage
queue depends on whether or not the queue is recoverable. If the
queue is recoverable, the task has the lock until the logical unit of
work is complete. If it is not recoverable, the task has the lock for the
duration of the temporary storage request only.

 • Resource type TSSTRING indicates that the task is waiting for an
auxiliary temporary storage VSAM string. If you find that tasks
frequently wait on this resource, consider increasing the number of
temporary storage strings (system initialization parameter TS).

 • If a user task is waiting on resource type TSUT, activity keypointing
is taking place. This involves a large amount of I/O, and, if there are
many temporary storage queues, it could take a relatively long time
to complete.

 • Resource type TSWBUFFR indicates that the waiting task has issued
an auxiliary temporary storage request, but the write buffers are all in
use. You have no control over how temporary storage allocates read
buffers and write buffers from the buffer pool, but if you find that tasks
are often made to wait on this resource, increasing the number of
auxiliary temporary storage buffers (system initialization parameter
TS) should help solve the problem.

• Transient data waits . Transient data waits occur when a task is
suspended on resource type TDEPLOCK, with a resource name
corresponding to a transient data queue name. The task has issued a
request against an extrapartition transient data queue, but another task
is already accessing the same queue. The waiting task cannot resume
until that activity is complete.

Significant time spent in transient data waits occur becauset is necessary
for a task to change TCB mode to open and close a data set. The task
must relinquish control while this happens. Depending on the system
loading, rel;inquishing control might take several seconds. This
contributes to the wait that the second task experiences, while the
second task is suspended on resource type TDEPLOCK,.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .8

 CICS uses the access method QSAM to write data to extrapartition

transient data destinations. QSAM executes synchronously with
tasks requesting its services. This means that any task invoking a
QSAM service must wait until the QSAM processing is complete. If,
for any reason, QSAM enters an extended wait, the requesting task
also experiences an extended wait.

The possibility of an extended wait arises whenever QSAM attempts
to access an extrapartition data set. QSAM uses the MVS RESERVE
volume-locking mechanism to gain exclusive control of volumes while
it accesses them, which means that any other region attempting to
write to the same volume is forced to wait.

If tasks frequently get suspended on resource type TDEPLOCK, you
should determine which other transactions write data to the same
extrapartition destination. You might then consider redefining the
extrapartition destinations in the DCT (destination control table).

You can find further guidance information about the constraints that
apply to tasks writing to intrapartition destinations in the CICS
Application Programming Guide. For more details of the properties of
recoverable transient data queues, see the CICS Resource Definition
Guide.

• Another common cause of locks on a CICS resource is the CICS shared
database facility. An IMS batch job can access a local DL/I database
controlled in a CICS region. Any DL/I request from the IMS batch
application program is handled through the facilities of CICS instead of
IMS DB.

A shared database region contains an IMS batch application program
that processes local DL/I databases, and the application program in the
shared database region is scheduled by MVS job management. The job
stream for the job specifies the CICS batch region controller. The shared
database program uses DL/I CALLs for database references. An
application program executing in a shared database region can access
only the local DL/I databases that are attached to the CICS online region.

The CICS shared database facility can greatly increase contention for a
database, particularly if update operations from batch programs are
involved.

• A normal CICS task accesses and enqueues on a small number of
records from a database.

 This can also greatly increase the requirements for storage in the IMS/ESA enqueue pool

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .9

• An IMS batch program may access and enqueue on all the records
in the database, effectively locking up the database until the program
completes . If the batch jobs are update jobs, they are likely to lock5

out the database from online use until they finish running, which
typically takes several minutes.

The following guidance is provided by IBM in the referenced CICS
Performance Guides:

• CICS using DBCTL performs better than function shipping. Performance

can be improved by replacing any database owning region (DOR) with
a DBCTL owning region.

• Users accessing DL/I databases from CICS via the IMS DBCTL facility

should use IMS BMPs rather than CICS shared database.

• In general, use CICS shared database only when absolutely necessary.
Either try to minimize or eliminate update operations and run batch jobs
during offpeak times when the system is not busy, or use IMS data
sharing.

If it is necessary to run batch update during online operations, do one of
the following:

• Run the batch update during periods of low online activity.

• Close down the online transactions that reference the database

• Inform users of the database that they are most likely to experience
an increase in response time during the period of updating from the
batch region

• Incorporate frequent checkpoints in batch applications.

You should also review all DL/I PSBs to minimize the contention between
batch and online CICS transactions and possibly increase the priority for
online transactions versus the partition control task.

If batch update operations are required, use of the IMS/ESA or DL/I
Checkpoint Call can free up records when they are updated, but may
complicate program restart in the case of a batch program abend.

©Copyright 1994, Computer Management Sciences, Inc. Revised: April, 2002 Rule WLM123 .10

Storage for the dynamic buffer may need to be increased because a large
amount of backout information may have to be kept until batch program
completion.

Reference : CICS/ESA Version 4.1 Performance Guide
Section 2.7.1.1: The response time breakdown in percentage section
Section 2.7.1.2: The state section

CICS/TS Release 1.1 Performance Guide
Section 2.7.1.1: The response time breakdown in percentage section
Section 2.7.1.2: The state section

CICS/TS Release 1.2 Performance Guide
Section 2.7.1.1: The response time breakdown in percentage section
Section 2.7.1.2: The state section

CICS/TS Release 1.3 Performance Guide
Section 2.6.1.1: The response time breakdown in percentage section
Section 2.6.1.2: The state section

CICS/TS for z/OS Release 2.1 Performance Guide: Chapter 8 (Managing
Workloads).

CICS/TS for z/OS Release 2.2 Performance Guide: Chapter 8 (Managing |
Workloads). |

